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Abstract
Lifelong person re-identification (LReID) refers to matching people across different cameras given continuous data streams.
The challenge of catastrophic forgetting of old knowledge and the effective acquisition of new knowledge form a significant
dilemma for LReID. Most current LReID methods propose to retain abundant exemplars from historical data, which are
further rehearsed to fully fine-tune the whole model. However, such a learning paradigm will inevitably hinder data privacy
and result in substantial computation costs. In this paper, we propose a paradigm for exemplar-free LReID through model re-
parameterization.Without retaining any exemplars, our designedmethod adopts a novel Prompt-guided Adaptive Exponential
MovingAverage (PAEMA) strategy to achieve dynamic knowledge consolidation. Our key idea is to leverage visual prompting
as the guidance for model re-parameterization to benefit knowledge preservation. Conventional Exponential Moving Average
(EMA) methods rely on fixed or time-varied constants as weighting parameters, the unpredictable correlation between new
and old data streams may lead to varying levels of model parameter drifting during LReID learning. Hence, we argue that a
proper weighting parameter should be conditioned on the variation of new and old models to provide an adaptive knowledge
consolidation for LReID. To do so, an adaptive mechanism is proposed to utilize the visual prompt as a surrogate for
model variation estimation. Consequently, without using any exemplars, the forgetting issue in LReID is greatly alleviated.
Experiments on various LReID benchmarks have verified the superiority of our method against the state-of-the-art lifelong
learning and LReID approaches. Code is available at https://github.com/zhoujiahuan1991/IJCV2024-PAEMA/.
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1 Introduction

Person re-identification (ReID), aiming to retrieve the same
people across different camera views, has played a crucial
role in many computer vision tasks (Luo et al., 2019; Zhang
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et al., 2019; Wang et al., 2021). Though recent ReID meth-
ods have achieved promising performance, most of them
assume that all the training data can be accessed at once
(as shown in Fig. 1a), and their performance drops dramati-
cally in a practical scenario where the new training data come
continually (Zhang et al., 2022; Huang et al., 2022). Thus,
existing ReIDmodels need to be incrementally updated from
sequential learning of intermittent new data, and the task
of Lifelong Person ReID (LReID) has attracted increasing
attention recently (as shown in Fig. 1b).

Similar to other lifelong learning-based tasks (Rebuffi et
al., 2017; Wang et al., 2023; Kalb & Beyerer, 2023; Liu et
al., 2023), the main challenge of LReID is the catastrophic
forgetting of the knowledge learned from old datasets. To
mitigate this issue, most recent works (Wu & Gong, 2021;
Ge et al., 2022; Huang et al., 2022; Yu et al., 2023) pro-
pose to address it by retaining exemplars of learned tasks and
emphasizing the feature consistency of exemplars between
the current and previous models (as shown in Fig. 1c). How-
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Fig. 1 The comparison between the general ReID (a) and LReID tasks
(b), as well as the existing exemplar-based LReID methods (c) and our
proposed exemplar-free model (d)

ever, such a learning paradigmwill not only inevitably hinder
data privacy, but also result in substantial storage and train-
ing consumption with the increase of exemplar amounts over
time. Although a few latest works (Pu et al., 2021; Sun&Mu,
2022; Pu et al., 2022) have begun to investigate the exemplar-
free LReID scenario, their performance is severely limited
due to the lack of effective anti-forgetting designs.

Therefore, in this paper, we focus on such a more chal-
lenging scenario in LReID that no exemplar is allowed to
retain for learning. In this setting, the catastrophic forget-
ting issue of historical data streams will be even exaggerated
since there is no explicit prior knowledge provided. To
tackle it, we design a novel re-parameterization-based learn-
ing paradigm that a Prompt-guided Adaptive Exponential
Moving Average (PAEMA) strategy is adopted to achieve
dynamic knowledge consolidation without exemplars (as
shown in Fig. 1d). Different from the existing EMA meth-
ods that usually utilize a fixed or time-varied constant as the
balancing parameter (Cai et al., 2021; Lin et al., 2022; Yu et
al., 2023), we argue that a proper balancing parameter should
be conditioned on the variation of new and old models. This
is because the correlation between new and old data streams
is always unpredictable and may lead to different levels of
model parameter drifting during LReID.

To achieve this,we propose a novel adaptivemechanism to
leverage the learnable prompts as a surrogate for model vari-
ation prediction. Based on a ViT (Dosovitskiy et al., 2020)
backbone, multiple learnable prompts are learned for each
multi-head self-attention (MSA) layer to encode the knowl-
edge of the new data. After training on the new data, these
prompts can automatically predict the variety of models with
a balancing parameter for PAEMA. By adaptively fusing the
models at different learning stages, our approach can readily
achieve a better balance of new knowledge acquisition and
old knowledge forgetting. Even if no exemplars are retained,
the catastrophic forgetting issue in LReID is greatly allevi-
ated. In summary, the main contributions of this paper are
three-fold:

(1) To tackle a more challenging exemplar-free scenario
in LReID, we propose a prompt-integrated ViT-based LReID
model alongwith a novel adaptivemodel re-parameterization
algorithm. (2) To mitigate the catastrophic forgetting issue, a
novel Prompt-guidedAdaptive ExponentialMovingAverage
(PAEMA) strategy is proposed to achieve dynamic knowl-
edge consolidation for LReID. (3) Even without retaining
any old exemplars, extensive experiments on various LReID
benchmarks have demonstrated our superiority against the
existing exemplar-based state-of-the-art LReID approaches.

2 RelatedWork

2.1 Person Re-identification

Person re-identification (ReID) aims to retrieve the person
of interest from the given gallery set (Ahmed et al., 2015;
Li et al., 2018; Luo et al., 2019). Owing to the collection of
tremendous labeled data, supervised ReID methods (Zhuang
et al., 2020; He et al., 2021; Chen et al., 2017) have achieved
remarkable performance on various benchmarks but suffered
severely from the heavy annotation bottleneck and poor gen-
eralization ability across different datasets (Liao & Shao,
2022; Ni et al., 2022). The main reason is that the domain
gap inhibits these well-trained models from well handling
different datasets (Liu et al., 2019; Song et al., 2019; Jin et al.,
2020). To settle this problem, recently, various unsupervised
learning ReID approaches (Yu et al., 2019; Wang & Zhang,
2020; Zheng et al., 2021; Lin et al., 2019; Isobe et al., 2021;
Cho et al., 2022) are proposed which generalize from the
labeled source domain to the unlabeled target domain. These
methods assume that all training data are available before-
hand and neglect the factor that, in real scenarios, the training
data may not be available at once but come sequentially.
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2.2 Lifelong learning

In the area of computer vision, deep learning methods have
shown remarkable capabilities, often surpassing human per-
formance when applied to fixed datasets. However, when
confronted with a continuous stream of training data instead
of a static dataset, certain methods may falter due to the
evolving nature of knowledge. To address this challenge,
lifelong learning, also named continual learning or incre-
mental learning,was introduced (Rebuffi et al., 2017; Rannen
et al., 2017), aiming to strike a balance between the acqui-
sition of new knowledge and the forgetting of previously
learned knowledge. Existing lifelong learning methods can
be grouped into three categories: exemplar-based methods,
architecture-based methods, and regularization-based meth-
ods. Exemplar-based methods (Prabhu et al., 2020; Liu et al.,
2021; Luo et al., 2023)maintain a small set of previous data to
replay and reinforce prior knowledge. However, these meth-
ods often raise concerns about data privacy since they require
storing previous data. Architecture-based methods (Wang et
al., 2022a, b;Zhou et al., 2022;Huet al., 2023) design specific
parameters for each lifelong learning step and dynamically
expand the models to retain previous knowledge. However,
they suffer from continuous increases in parameter num-
bers, leading to substantial storage and training consumption.
Regularization-based methods (Kirkpatrick et al., 2017; Li
& Hoiem, 2017; Tung &Mori, 2019; Sun et al., 2023) adopt
knowledge distillation to transfer knowledge from the old
model to the new model and regularize the model change,
thus mitigating knowledge forgetting. Unfortunately, most
of these methods primarily focus on distilling knowledge
from the logit predictions, which may not perform optimally
in scenarios like person re-identification, where datasets may
encompass thousands of distinct individuals.

2.3 Lifelong Person Re-identification

Recently, lifelong person re-identification (LReID) (Wu &
Gong, 2021; Ge et al., 2022; Pu et al., 2022; Yu et al., 2023)
has becomemore notable owing to its importance in handling
realistic data streams. Simultaneously, the classical challenge
in lifelong learning, catastrophic forgetting (Li & Hoiem,
2017; Shmelkov et al., 2017) also occurs in LReID. To alle-
viate this issue, Wu and Gong (2021) designed a scheme
to simultaneously maintain the classification, representation,
and distribution coherence between the old and new mod-
els. Pu et al. (2021) focused on old knowledge accumulation
in order to propagate the previously learned knowledge to
new domains. Thus, a similarity graph and a knowledge
graph were designed for new knowledge acquisition and old
knowledge accumulation. Sun and Mu (2022) proposed a
differentiable patch sampler to adaptively select discrimina-
tive patches for coherence learning, trying to alleviate the

influence of large data distribution discrepancy between old
and new data. Ge et al. (2022) formulated LReID as a domain
adaption problemandproposed a pseudo-task transformation
to minimize the domain gap between different datasets. Yu
et al. (2023) proposed a rehearsal and refreshing method
to achieve both positive forward and backward knowledge
transfer.

However, most of the aforementioned LReID methods
have to retain sufficient exemplars to alleviate forgetting.
Thus, they always suffer from severe data privacy disclosure
and heavy storage costs. Even worse, when tackling privacy-
sensitive tasks, no exemplars are allowed to be retainedwhich
causes them to fail completely. Although few works (Pu et
al., 2021; Sun & Mu, 2022) do not need to keep exemplars,
their performance is largely deteriorated compared with the
exemplar-based ones. In this paper, without retaining any old
data, we propose a novel exemplar-free LReID method that
can consistently outperform those exemplar-based methods.

2.4 Prompting in Lifelong Learning

Prompts are firstly designed in natural language processing
(NLP) (Houlsby et al., 2019) which pretend instructions to
the input so that the pre-trainedmodel can obtain information
on downstream tasks. Although some recent works (Petroni
et al., 2019; Cui et al., 2021) demonstrated that manually
designed prompts can improve the generalization ability of
models, designing prompts needs specific domain knowl-
edge which is indeed difficult. Recently, prompt tuning
(PT) (Lester et al., 2021) has been studied by regarding
prompts as learnable parameters. In the field of computer
vision, VPT (Jia et al., 2022) adapted prompt tuning to learn
task-specific tokens for the encoder layers in a vision trans-
former (ViT) (Dosovitskiy et al., 2020). This is because most
visual prompting methods assume that the pretrained ViT
model is strong enough to extract discriminative features
and introducing minor learnable parameters can adapt the
model to the new tasks (Wang et al., 2022a). Recently, Wang
et al. (2022b); Douillard et al. (2022); Wang et al. (2022);
Smith et al. (2023) combined prompt learning with lifelong
learning and exhibited promising results in the task of clas-
sification. Among them, Wang et al. (2022b) optimized a
pool of prompts among tasks and selected the most similar
prompts for inference, and (Wang et al., 2022; Douillard et
al., 2022; Wang et al., 2022a; Smith et al., 2023) proposed
task-independent prompts to mitigate the influence of differ-
ent tasks.

In our method, we further leverage prompts from a dif-
ferent but important perspective. Besides utilizing prompts
to benefit new knowledge learning, we also treat them as a
surrogate for modeling knowledge variation during lifelong
learning. A prompt-guided balancing parameter can be read-
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Fig. 2 The overall pipeline of our proposed PAEMA LReID model. For the s-th training dataset, the obtained model θs is further fused with the
PAEMA model ˜θs−1 at the s−1 training step via a prompt-guided adaptive balancing parameter α. The gray mask means these tokens are not
generated

ily obtained for PAEMA to mitigate the forgetting issue in
LReID.

3 The ProposedMethod

3.1 Problem Formulation

In the task of LReID, a stream of S datasets denoted as
D = {Ds}Ss=1 are collected in sequence to incrementally train
the model. Each dataset Ds has a training set Ds

train and a
testing set Ds

test which have no overlapping identities. In our
method, we assume the model can not access the data from
previous training steps. At step s, the model can only utilize
the training set Ds

train for learning. For testing, all the test
sets {Di

test }Si=1 are utilized to evaluate the anti-forgetting and
acquisition ability of the LReID models. Besides, to further
verify the generalization ability of different LReIDmodels, a
set ofU unseen datasetsDU = {Di

u}Ui=1 is directly evaluated
using the obtained LReID models trained on D.

3.2 Overview of PAEMA

As illustrated in Fig. 2, we propose a prompt-guide anti-
forgettingmodel for exemplar-free LReID. Thewholemodel
consists of a ViT-based LReID backbone for feature extrac-

tion (Sect. 3.3) and a Prompt-guided Adaptive Exponential
Moving Average (PAEMA) algorithm to dynamically con-
solidate learned knowledge (Sect. 3.5). The model trained at
step s is denoted as θs = θcs ◦θas ◦θes , where θs, θ

e
s , θ

a
s , and θcs

represent the whole model, the input embedding module, the
feature encoding module, and the classification head module
respectively.

During training, our model is initially trained on the first
training set and the learned model parameter is θ1 which also
serves as the re-parameterizedmodel parameter of˜θ1 directly.
At the following training step s ≥ 2, the re-parameterized
model parameter ˜θs−1 at the (s-1)-th step is adopted as the
initial parameter for step s and fine-tuned on the new train-
ing set Ds

train to learn θs . Once θs is obtained, the proposed
PAEMA algorithm is explored to adapt it to ˜θs via adaptively
fusing ˜θs−1 and θs for a better balance between new knowl-
edge acquisition and old knowledge forgetting. The core is to
leverage a set of globally-shared prompts to depict the model
knowledge variation which can act as guidance for automat-
ically balancing ˜θs−1 and θs . To be noticed, throughout the
whole LReID learning procedure in our work, no data from
the previous training datasets in any form are preserved.
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3.3 AViT-based LReID Backbone

Currently, Vision Transformer (ViT) (Dosovitskiy et al.,
2020) has shown overwhelming performance in many com-
puter vision areas. A recent work (He et al., 2021) illustrated
the effectiveness of pure-transformer models in tackling the
ReID task. Inspired by He et al. (2021), we first build a ViT-
based backbone for discriminative representation learning
of LReID. For simplicity, we omit the dataset index s in this
section.

3.3.1 Feature Extractor

In the input embedding module θe, an input training image
x ∈ R

H×W×C is first split into L non-overlapped patches
and flattened into vectors {xip}Li=1 ∈ R

M2C , where H ,W ,C
represent image height, width, and the number of channels
respectively, L is the number of patches and M is the patch
size. Then the input embedding layer θe maps these vectors
into a set of d-dimension patch embedding, each of which
serves as a patch token. A learnable class token xcls is con-
catenated to the patch tokens and its corresponding output
token serves as the global feature. The position encoding
P ∈ R

(L+1)d is also added to tokens to encode the spatial
configuration. Thus, the input x is re-formed as:

x∗ = [xcls, θe(x1p), θe(x2p), ..., θe(x Lp )] + P. (1)

Then x∗ is fed into the feature encoding model θa which
consists of N consecutive encoder blocks (Vaswani et al.,
2017). The key part of each block is the multi-head self-
attention (MSA) layer:

MSA(Q, K , V ) = Concat(h1, ..., hm)WO

hi = Attention(QWQ
i , KWK

i , VWV
i )

(2)

where Q, K , andV are input query, key, and value to theMSA
layer, WO ,WQ

i ,WK
i , and WV

i are the projection matrices,
hi is the i-th attention head, and m is the number of heads.
In our model, following (Dosovitskiy et al., 2020), we set
Q=K=V=x∗ as the inputs for the first MSA layer. Therefore,
the output feature embedding of the feature extractor can be
formulated as:

fx = θa(x∗) (3)

3.3.2 Classifier and Optimization

Though ReID models usually regard the ReID task as a
person ranking problem and take feature vectors as outputs
instead of person identities, Luo et al. (2019) has found that
an identity classification loss can separate the embedding

spaces into different subspaces to facilitate theReID training.
Therefore, in our LReID model, we train a dataset-specific
classification head θc to predict probabilities from the corre-
sponding output feature fcls,x ∈ fx of the class token xcls .
Then, the predicted probabilities are supervised by:

LI D =
∑

x∈B
LCE

(

y, θc
(

fcls,x
))

(4)

whereB is a training batchwith B samples.
(

fcls,x , y
)

are the
input feature and its class label. LCE is the cross-entropy loss
without label smoothing. Besides, we also adopt the triplet
loss with a soft-margin to enhance intra-class compactness
and inter-class separability, which can be formulated as:

LT =
∑

x∈B
log

[

1 + exp
(‖ fx − f p‖22 − ‖ fx − fn‖22

)

]

, (5)

where ( f p, fn) are features of positive and negative samples
for x respectively (He et al., 2021).

Thus, the above ViT-based LReID backbone is optimized
via a combined loss consisting of LI D and LT :

L = LI + LT (6)

3.4 EMA: Exponential Moving Average

In LReID, when fine-tuning the model parameter θs using
the s-th training dataset, the model might be forced to adapt
to the new data distribution of Ds

train . However, without
retaining the exemplars from the previous s-1 datasets, the
fine-tuned model θs will result in serious forgetting of histor-
ical knowledge. A straightforward way to bring back the lost
knowledge is by directly fusing the fine-tuned model θs and
the old model˜θs−1, which is known as Exponential Moving
Average (EMA) (Cai et al., 2021; Xu et al., 2021):

˜θs = (1 − α)˜θs−1 + αθs, (7)

where α is the balancing parameter that controls the propor-
tion of θs and ˜θs−1 in ˜θs .

Here we would like to investigate why EMA could ben-
efit lifelong learning. Intuitively, the adopted optimization
loss Eq.6 aims to guide the model to distinguish different
people of new distribution perfectly, even to an extent, gen-
erate excess distance between different people. Motivated
by Sankaranarayanan et al. (2017); Wang et al. (2018), a
certain degree of disturbance of the fine-tuned model might
not cause serious performance degradation on the new data
domain, while the recovered old knowledge by the model
addition could contribute to the old data domains substan-
tially.
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Fig. 3 A verification experiment to demonstrate the relationship
between α and mAP at different learning steps in LReID

3.5 PAEMA: Prompt-Guided Adaptive EMA

Generally, conventional EMA (Lin et al., 2022) usually adopt
a fixed constant α or a time-varied value α = 1/s in Eq.7.
However, we empirically observe that the proper choices of
α vary significantly at different LReID steps, distinct from
fixed constant or 1/s. As illustrated in Fig. 3, we perform life-
long learning on fourReIDdatasets,where after each training
step, different α from 0 to 1 are sampled to obtain the best
value of α. The optimal values of α are 0.64, 0.35, and 0.60 at
2∼4-th training step. Therefore, how to adaptively determine
theα for different training datasets is necessary and important
to maximize the benefit brought by EMA. However, due to
the nonlinearity and complexity of large-scale deep models,
there is no direct correlation between the changes in output
features and model parameters, forming a significant chal-
lenge to the adaptive determination of α.

Thus we propose a novel prompt-guided knowledge shift-
ing estimation scheme, PAEMA, which not only utilizes
prompts to capture the information of certain tasks but also
exploits prompts as a surrogate for knowledge variation esti-
mation between different tasks. As a set of parameters in
the form of tokens, prompts have an intrinsic relationship
with the extracted features of input samples that share the
same token form. Therefore, besides instructing the model
to learn task-specific knowledge as commonly used by pre-
vious work (Wang et al., 2022a, b), we build globally-shared
prompts optimized for every task to investigate the rela-
tionships between the change of prompt parameters and
knowledge shifting.

To do so, learnable prompts are added to MSA layers
in θa instead of only to the embedding feature of input
image (Wang et al., 2022b; Douillard et al., 2022). Based
on the function of the MSA layer in Eq.2, our method learns
two prompt pK , pV ∈ R

L p×D and concatenates them to K

and V respectively:

MSA(Q, [pK ; K ], [pV ; V ]). (8)

To estimate a proper α in Eq.7, we denote N as the number
of total prompts and pns as the n-th prompt for the model
of step s. N is calculated by N = 2 × L p × Le, where
Le represents the number of MSA layers and for each MSA
layer, L p Key prompts and L p Value prompts are contained.
The difference of the prompts learned in step s and s−1 could
be simply represented as pns − pns−1 ∈ R

D . Then, we propose
aNormalized Prompt Difference formula which directly take
prompt parameters as input to map all prompt differences in
step s to a finite scalar Δps :

Δps = 1

N

N
∑

n=1

2‖pns − pns−1‖1
‖pns ‖1 + ‖pns−1‖ 1

. (9)

Since the supervised training of the deep network always
leads to massively over-parameterization on the current
dataset Ds , there is a boundary of tolerance ΔBs for new
model disturbance, within which the performance on the
domain of Ds will change slightly. According to Eq.7, let
ΔBs = ˜θs − θs and we obtain (1 − α) · (˜θs−1 − θs) = ΔBs

which means that α and˜θs−1 − θs have positive correlation.
This illustrates that the larger the knowledge shifting is, the
closer the boundary should be to the new model. Therefore,
the balancing parameter α can be calculated as:

α = Δps . (10)

An overview of our proposed PAEMA is presented in Algo-
rithm 1.

Algorithm 1 PAEMA training procedure.

Input: Data stream D = {Ds}Ss=1, initial model ˜θ0.
Output: Final model ˜θS .
1: for s ← 1 to S do
2: Initialise θs as ˜θs−1;
3: Train θs with LI + LT (Eq. 6);
4: if s = 1 then
5: ˜θs ← θs
6: else
7: Calculate α with (Eq. 9 and Eq. 10);
8: Calculate˜θs ← (1 − α)˜θs−1 + αθs (Eq. 7).
9: end if
10: end for

In summary, our proposed PAEMA is designed to estimate
the knowledge shifting by the variations of prompt param-
eters to instruct the EMA for a better balance of forgetting
and acquisition. For the use of prompts, we add learnable
prompts to all MSA layers for the following three reasons.
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Fig. 4 Visualization of model changes between adjacent steps at differ-
ent layers. A verification experiment is conducted to demonstrate that
the prompts added to different layers exhibit significant variations of
parameter changes according to Eq.9

Firstly, the gradient vanishing phenomenon is still inevitable
in current advanced deep networks (Glorot & Bengio, 2010;
He et al., 2016), measuring the change of models by only a
few layers of prompts, especially the early layers, is not accu-
rate enough. Secondly, as illustrated in Fig. 4, prompts from
different layers have different changing scales. Solely consid-
ering partial layers may result in biased knowledge-shifting
estimation (Table 2). At last, different layers propose to learn
different knowledge, e.g., in the lower layers, local structural
information is always learned, but in the higher layers, the
high-level semantic information can be bettermodeled. Thus,
to better estimate the model variation, all layers should be
considered comprehensively which are verified by the abla-
tion experiments in Table 8.

4 Experiments

4.1 Experimental Settings

4.1.1 Benchmarks

There are two streams of benchmarks, i.e., GwFReID
benchmark and AKA benchmark, in LReID proposed by
GwFReID (Wu & Gong, 2021) and AKA (Pu et al., 2021)
respectively. GwFReID benchmark adopts four widely-
used datasets as the training set with the showing order
of Market-1501 (Zheng et al., 2015), DukeMTMC (Ris-
tani et al., 2016), CUHK-SYSU (Xiao et al., 2016), and
MSMT17_v1 (Wei et al., 2018), and evaluate the generaliza-
tion of methods on another four test sets, i.e., CUHK01 (Li
et al., 2012), CUHK03 (Li et al., 2014), GRID (Loy et al.,
2010), and SenseReID (Zhao et al., 2017). AKA bench-

Table 1 The statistics of person re-identification datasets in our exper-
iments

Dataset Scale Person identities

Train Query Gallery

Market-1501 Large 751 750 751

DukeMTMC Large 702 702 1110

CUHK-SYSU Mid 942 2900 2900

MSMT_v1 Large 1041 3060 3060

MSMT_v2 Large 1041 3060 3060

CUHK03 Mid 767 700 700

CUHK02 Mid 1577 239 239

CUHK01 Small 485 486 486

GRID Small 125 125 126

SenseReID Mid 1718 521 1718

VIPeR Small 316 316 316

PRID Small 100 100 649

i-LIDS Small 59 60 60

mark consists of twelve datasets, five of which are chosen
as the training sets, i.e., Market-1501, DukeMTMC, CUHK-
SYSU,MSMT17_V2 (Wei et al., 2018), and CUHK03 (Li et
al., 2014), Seven of which are used as test-only sets to eval-
uate the generalization on unseen domains, i.e., CUHK01,
CUHK02 (Li & Wang, 2013), VIPeR (Gray & Tao, 2008),
PRID (Hirzer et al., 2011), i-LIDS (Zheng et al., 2009),
GRID, and SenseReID. Note that the GwFReID bench-
mark provides all the person identities and images of the
training datasets, whereas the AKA benchmark selects 500
identities and corresponding images from each training
dataset. Besides, AKA benchmark has two classical training
orders, i.e. Market-1501 → CUHK-SYSU → DukeMTMC
→ MSMT17_v2 → CUHK03, named AKA-Order-1, and
DukeMTMC → MSMT17_v2 → Market-1501 → CUHK-
SYSU → CUHK03, named AKA-Order-2. The detailed
statistics for these datasets in our experiments are provided
in Table 1.

4.1.2 Evaluation Metrics

The widely adopted mean Average Precision (mAP) and
Rank-1 (R@1) accuracy are explored in our experiments to
evaluate each individual dataset. To further verify the lifelong
learning capacity ofmodels, we calculate the average ofmAP
and R@1 results on all datasets as an overall evaluation met-
ric. We also evaluate the Average Forgetting (Chaudhry et
al., 2018) which represents the average performance degra-
dation compared to the trained step on each seen domain.
Specifically, the forgetting of j-th stage after training on t-th
stage can be computed as:
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Table 2 Comparison with
SOTA lifelong learning and
LReID methods on seen datasets
of GwFReID benchmark

Train: Market-1501 → DukeMTMC → CUHK-SYSU → MSMT17_v1

Market-1501 DukeMTMC CUHK-SYSU MSMT17_v1 Average

Methods E R@1 mAP R@1 mAP R@1 mAP R@1 mAP R@1 mAP

Joint-Train × 92.7 83.2 86.4 76.3 94.6 93.7 73.5 53.0 86.8 76.5

GwFReID � 81.6 60.9 66.5 46.7 83.9 81.4 52.4 25.9 71.1 53.7

PTKP � 90.1 77.0 78.0 63.8 90.1 88.4 67.5 41.9 81.4 67.6

PTKP-ViT‡ � 90.3 78.8 81.7 68.7 92.3 91.1 72.4 48.9 84.2 71.9

KRKC‡ � 81.6 61.0 73.3 59.3 90.3 88.7 68.3 43.9 78.4 63.2

KRKC-ViT‡ � 84.9 68.0 75.1 61.5 92.1 91.0 65.1 40.5 79.3 65.3

PAEMA � 90.0 78.4 82.1 71.0 93.6 92.5 76.8 55.8 85.6 74.4

LwF‡ × 82.0 63.6 72.4 60.5 92.2 90.7 61.2 38.9 77.0 63.4

SPD‡ × 82.0 63.5 72.8 60.5 92.0 90.7 71.8 49.6 79.6 66.1

CRL‡ × 83.0 66.5 73.0 60.9 92.2 90.7 61.0 39.6 77.3 64.4

L2P‡ × 84.9 67.9 46.2 30.0 84.3 82.0 27.1 11.1 60.6 47.7

Dualprompt‡ × 84.3 63.1 66.8 48.9 72.2 66.6 28.1 9.8 62.8 47.1

AKA‡ × 74.8 49.4 55.0 38.1 83.8 81.1 52.4 29.9 66.3 49.6

PatchKD‡ × 90.2 75.9 61.2 44.8 83.9 82.2 33.1 16.0 67.1 54.7

PTKP‡ × 73.5 47.4 67.1 47.4 77.9 75.2 65.1 37.4 70.9 51.9

PTKP-ViT‡ × 78.4 54.4 68.9 50.1 90.0 88.1 63.9 37.8 75.3 57.6

NAPA-VQ‡ × 82.0 63.2 73.2 60.9 91.3 89.7 69.7 48.3 79.0 65.5

PRAKA‡ × 84.3 67.8 74.7 63.4 91.6 90.2 71.1 49.3 80.4 67.7

PAEMA × 87.3 71.4 78.6 67.7 93.6 92.6 73.5 51.0 83.2 70.7

The bold numbers represent the best results
Emeans that sampled images of historical datasets are retained as exemplars and are replayed when new data
comes
‡ represents that we reproduce the results based on their code
PAEMA with exemplars means adopting the same sampling strategy as PTKP (Ge et al., 2022)

f tj = max
l∈{1,...,t−1} al, j − at, j (11)

where at, j represents the results of task j , after training the
model from 1 to t . Then the Average Forgetting at stage t can
be computed as:

Ft = 1

t − 1

t−1
∑

j=1

f tj (12)

4.2 Implementation Details

Following (He et al., 2021), ViT pre-trained on ImageNet-
21k (Deng et al., 2009) and then fine-tuned on ImageNet-
1k (Deng et al., 2009) is utilized to initialize the ViT-based
LReID backbone. The parameters of the ViT backbone
are optimized by an SGD (Amari, 1993) optimizer with a
momentum of 0.9, a weight decay of 1e-4, and a learning
rate of 8e-3. The number of MSA layers is N = 12. The
prompts in our model are initialized by a uniform distribu-
tion between 0 and 1, then optimized by an Adam (Kingma
& Ba, 2014) optimizer with β1 = 0.9, β2 = 0.999, and a

learning rate of 5e-3. Note that the optimizer configurations
of the ViT backbone and prompts are kept consistent with
the recent works (He et al., 2021; Zhu et al., 2022). For train-
ing data, all images are resized to 256× 128 and augmented
with random horizontal flipping, padding, random cropping,
normalization, and random erasing. The batch size B is set
to 64. For the first dataset, we train our model for 80 epochs
in total, and the learning rate decays by 0.1 after the 40th and
70th epochs. For the later datasets, we train the network for
60 epochs in total, and the learning rate decays by 0.1 after
the 30th epoch. The proposed method is implemented with
Pytorch and trained on a single NVIDIA 4090 GPU.

4.3 Comparison with the State-of-the-art (SOTA)

4.3.1 Comparison Methods

In our experiments, five lifelong learning methods (LwF (Li
& Hoiem, 2017), SPD (Tung & Mori, 2019), CRL (Zhao
et al., 2021)), NAPA-VQ (Malepathirana et al., 2023),
PRAKA (Shi&Ye, 2023), latest prompt based lifelong learn-
ing method (L2P (Wang et al., 2022b), Dualprompt (Wang
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et al., 2022a)) and the LReID approaches (GwFReID (Wu &
Gong, 2021), AKA (Pu et al., 2021), PatchKD (Sun & Mu,
2022), PTKP (Ge et al., 2022), KRKC (Yu et al., 2023)) are
compared with our PAEMA.

Considering that our prompt parameters are specifically
designed for ViT, we readily choose ViT as our backbone.
Besides, we also replace the ResNet-50 backbone in sev-
eral important methods (e.g., LwF, SPD, CRL, NAPA-VQ,
PRAKA, PTKP, KRKC) with our adopted ViT-based back-
bone for fair comparisons with the official configuration in
the original paper. Moreover, a special experimental setting
Joint-Train is also conducted on our baseline, which denotes
collecting the data from all the training datasets together to
train the ReIDmodel at once. Thus, Joint-Train is commonly
regarded as the upper bound of LReID models.

4.3.2 Results on Seen Datasets of GwFReID Benchmark

The comparison results with the traditional lifelong learn-
ing methods and state-of-the-art (SOTA) LReIDmethods are
reported in Table 6 where the symbol E denotes exemplars
are used during LReID training.

4.3.2.1 PAEMA w/o Exemplar vs. SOTA w/o Exemplar Com-
pared with the LReID approach without using exemplar,
AKA and PatchKD, our proposed PAEMA outperforms the
best player by 17.4%/22.9%, 9.7%/10.4%, and 21.1%/21.1%
of R@1/mAP on the last three datasets. Compared with
the latest PTKP approach, without using any exemplars,
our proposed PAEMA can significantly outperform them
(PTKP, PTKP-ViT) by at least 8.9%/17.0%, 9.7%/17.6%,
3.6%/4.5%, and 8.4%/13.2% of R@1/mAP on all four
datasets respectively. It can be attributed to the anti-forgetting
ability of our proposed prompt-guided adaptive knowledge
consolidationmodel. Compared to lifelong learningmethods
(LwF, SPD, CRL, NAPA-VQ, PRAKA, L2P, Dualprompt),
our proposed PAEMA can also outperform the best player
by 2.4%/3.5%, 3.9%/4.3%, 1.4%/1.9%, and 1.7%/1.4% of
R@1/mAPon four datasets respectively. This observed supe-
riority can be attributed to the inherent differences in the
tasks addressed by these methods compared to the Person
Re-identification task tackled by PAEMA. These lifelong
learning methods are primarily designed for image classi-
fication, with a focus on alleviating catastrophic forgetting
in the classification head. However, person re-identification
is fundamentally an image retrieval task, where the labels
of test images differ from those of the training set. Conse-
quently, thesemethods achieve inferior results in comparison
to PAEMA.

4.3.2.2 PAEMA w/o exemplar versus SOTA w/ exemplar
Even compared with exemplar-based methods, our PAEMA
still greatly exceeds GwFReID, PTKP, and KRKC. Overall,

our PAEMA achieves 1.8%/3.1% improvement on Aver-
age R@1/mAP over the original PTKP with ResNet-50
backbone, and comparable results with our implemented
PTKP-ViT, verifying our effectiveness in balancing knowl-
edge acquisition and forgetting. It is noticed that compared
to PTKP, PTKP-ViT, and PatchKD, our PAEMA achieves a
little inferior performance on Market-1501. This is because
their methods reserve exemplars of old datasets or keep the
old models during training for knowledge distillation. These
techniques retain old knowledge but also impair the ability
of knowledge acquisition, resulting in inferior average per-
formance.

4.3.2.3 PAEMA w/ exemplar Versus Others w/ exemplar
Furthermore, we conduct an extra experiment to incremen-
tally train our model using exemplars in the same way
as PTKP. The results show that our method can consis-
tently and greatly beat the second-best player PTKP-ViT on
DukeMTMC, CUHK-SYSU, and MSMT17 by 0.4%/2.3%,
1.3%/1.4%, and 4.4%/6.9%ofR@1/mAP.As for theMarket-
1501 dataset which is learned at the initial stage, the
R@1/mAP performance difference is just 0.3%/0.4%, which
is comparable with PTKP-ViT. Thus, the overall 1.4%/2.5%
improvement on Average R@1/mAP demonstrates that our
PAEMA is indeed complementary to exemplar-based strate-
gies. Even if the exemplars can be retained for rehearsal, our
PAEMA still presents promising performance to facilitate
LReID.

4.3.2.4 Average Forgetting Results To verify the anti-
forgetting ability of different methods, we also provide
the average forgetting results in Table 6. Without using
any exemplar, our PAEMA achieves the average forget-
ting of 3.37%/6.44% on R@1/mAP, which is significantly
lower than the existing best model PRAKA (4.58%/7.52%).
Besides, the average forgetting of PAEMA can be further
reducedwhenhaving access to exemplars. These results show
the superior anti-forgetting capability of PAEMA.

4.3.2.5 Performance Curve To present the R@1 and mAP
performance across LReID training steps in detail, we show
the results of methods on different training steps in Fig. 5.
It can be observed that, with similar R@1 and mAP accu-
racy for the initial stage, PAEMA achieves the best results
across subsequent training steps. These results underscore
that PAEMA could better consolidate the learned knowledge
along the training steps, owing to its capacity for adaptively
balancing knowledge acquisition and forgetting.

4.3.3 Results on Unseen Datasets of GwFReID Benchmark

To further verify the generalization ability of LReID mod-
els, experiments are conducted on four unseen datasets and
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Fig. 5 The mAP and R@1 results on seen datasets of each training step

the results are shown in Table 3. Our PAEMA outper-
forms all compared methods and achieves SOTA results of
54.8%/58.5%onAverageR@1/mAP. Specifically, compared
to the exemplar-based methods, our PAEMA achieves bet-
ter R@1/mAP performance on CUHK01 and SenseReID,
and comparable performance on CUHK03 and GRID. Since
PTKP uses the exemplars from the historical datasets for
training, some knowledge bias may be brought to pro-
mote the performance on CUHK03 and GRID. Overall,
our PAEMA surpasses the exemplar-based approach PTKP-
ViT by 3.1%/3.5% on Average R@1/mAP of all unseen

domains. Compared with other exemplar-free lifelong learn-
ing and LReID methods, our approach achieves at least
1.5%/1.5%, 6.2%/3.8%, 4.0%/5.1%, and 1.6%/1.3% of
R@1/mAP improvement on four unseen datasets. Besides,
our method also outperforms Joint-Train on all unseen
datasets. The above results show the superiority of our
PAEMA in consolidating generalizable knowledge.

4.3.4 Results on AKA-Order-1 and AKA-Order-2 Benchmark

We follow previous works such as AKA and PatchKD
to compare exemplar-free methods on the AKA-Order-1
and AKA-Order-2 benchmarks. The comparison results are
reported in Tables 4 and 5. For the results of the seen
datasets, it can be observed that PAEMA outperforms other
methods on the first four datasets and improves the aver-
age R@1/mAP of the SOTA methods by 2.2%/3.2% and
1.8%/1.8% under AKA-Order-1 and AKA-Order-2 bench-
marks. For the results of the unseen datasets, PAEMA
improves the average performance of the SOTA methods by
3.9%/3.9% and 2.6%/2.8% and achieves comparable results
with the Joint-Train. These results of different benchmarks
show the consistent superiority of PAEMA in anti-forgetting
and generalization ability.

Table 3 Comparison with
SOTA lifelong learning and
LReID methods on unseen
datasets of GwFReID
benchmark

CUHK01 CUHK03 GRID SenseReID Average

Methods R@1 mAP R@1 mAP R@1 mAP R@1 mAP R@1 mAP

Joint-Train 81.2 80.3 40.7 37.9 32.8 44.0 42.3 50.4 49.3 53.2

GwFReID∗ – – 40.2 – – – – – – –

PTKP∗ 79.1 – 54.1 – 31.5 – 44.8 – 52.4 –

PTKP-ViT∗ 79.1 77.9 43.7 40.9 37.6 46.3 46.3 54.9 51.7 55.0

KRKC∗ 79.3 78.1 36.4 34.6 32.8 41.0 40.6 49.5 47.3 50.8

KRKC-ViT∗ 79.1 78.1 40.1 35.9 15.2 23.1 37.5 45.8 43.0 45.7

LwF 75.7 75.5 40.6 37.1 32.8 42.8 44.4 53.1 48.4 52.2

SPD 80.1 79.9 42.5 40.6 30.4 40.8 46.3 55.1 49.9 54.1

CRL 77.0 76.2 39.8 37.0 32.0 42.3 44.6 53.4 48.3 52.2

L2P 55.1 57.8 26.3 24.1 17.6 26.9 33.0 40.8 33.0 37.4

Dualprompt 36.2 34.2 23.6 16.5 11.2 20.1 24.3 29.1 23.8 25.0

PatchKD 62.0 63.0 15.9 16.2 21.6 30.9 35.2 43.5 33.7 38.4

PTKP 59.6 59.2 42.1 35.9 13.6 19.3 36.8 44.7 38.0 39.8

PTKP-ViT 72.2 72.2 34.8 33.0 28.0 37.3 40.4 48.4 43.9 47.7

NAPA-VQ 77.4 77.1 41.1 39.5 32.8 43.3 45.5 54.5 49.2 53.6

PRAKA 77.1 77.8 44.9 42.3 32.0 42.9 48.3 57.2 50.6 54.8

PAEMA 81.6 81.4 51.1 46.1 36.8 48.0 49.9 58.5 54.8 58.5

The bold numbers represent the best results
∗ denotes that historical exemplars are used
− denotes the original paper doesn’t report this result
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Table 4 Results on AKA-Order-1 benchmark

Train: Market-1501 → CUHK-SYSU → DukeMTMC → MSMT17_v2 → CUHK03

Market-1501 CUHK-SYSU DukeMTMC MSMT17_v2 CUHK03 Seen Average Unseen Average

Method R@1 mAP R@1 mAP R@1 mAP R@1 mAP R@1 mAP R@1 mAP R@1 mAP

Joint-Train 92.3 82.3 92.9 92.3 86.0 75.9 67.6 44.8 64.4 65.1 80.8 71.9 64.3 70.9

LwF 78.1 59.2 88.0 86.2 70.3 56.6 47.1 24.4 59.0 57.8 68.5 56.9 58.0 66.3

SPD 82.7 67.7 89.3 87.5 69.8 55.6 38.3 17.4 52.4 51.8 66.5 56.0 59.3 66.4

CRL 78.9 60.4 87.8 86.2 71.5 57.3 47.0 24.7 55.9 54.9 68.2 56.7 57.8 65.7

L2P 83.6 65.1 79.6 76.7 45.3 28.9 20.8 7.61 17.9 18.4 49.4 39.3 40.2 47.8

Dualprompt 82.5 62.3 75.0 70.0 61.0 40.5 28.1 8.15 35.9 35.6 56.5 43.3 36.8 41.4

AKA 72.0 51.2 45.1 47.5 33.1 18.7 37.6 16.4 27.6 27.7 43.1 32.3 40.4 44.3

PatchKD 85.7 68.5 78.6 75.6 50.4 33.8 17.0 6.49 36.8 34.1 53.7 43.7 45.4 49.1

NAPA-VQ 80.6 62.6 88.0 86.1 72.4 58.7 48.7 26.4 58.9 57.5 69.7 58.3 57.9 65.2

PRAKA 78.2 59.2 88.3 86.6 71.5 58.0 49.1 25.9 65.3 63.5 70.5 58.6 57.0 65.0

PAEMA 86.9 71.7 91.3 90.0 79.0 66.0 55.3 31.4 50.8 50.0 72.7 61.8 63.2 70.3

The bold numbers represent the best results

Table 5 Results on AKA-Order-2 benchmark

Train: DukeMTMC → MSMT17_v2 → Market-1501 → CUHK-SYSU → CUHK03

DukeMTMC MSMT17_v2 Market-1501 CUHK-SYSU CUHK03 Seen Average Unseen Average

Method R@1 mAP R@1 mAP R@1 mAP R@1 mAP R@1 mAP R@1 mAP R@1 mAP

JointTrain 86.0 75.9 67.6 44.8 92.3 82.3 92.9 92.3 64.4 65.1 80.8 71.9 64.3 70.9

LwF 71.1 56.8 38.1 18.3 82.7 66.7 88.5 86.9 58.4 56.4 67.8 57.0 59.9 66.6

SPD 77.6 66.1 32.0 13.7 73.8 53.6 88.8 87.2 48.2 48.0 64.1 53.7 57.3 64.2

CRL 72.9 58.8 36.9 17.2 82.4 66.7 88.9 86.8 53.2 52.3 66.9 56.4 57.6 65.2

L2P 81.6 69.0 27.5 10.5 60.5 35.9 80.8 78.3 25.1 25.6 55.1 43.9 46.2 54.0

Dualprompt 81.6 68.8 35.0 13.3 77.8 55.6 80.1 77.6 41.1 40.3 63.1 51.1 44.9 50.3

AKA 60.1 42.2 15.1 5.40 59.8 37.2 73.9 71.2 37.9 36.9 49.4 38.6 41.7 46.0

PatchKD 74.1 58.3 17.4 6.39 67.4 43.2 76.9 74.5 34.8 33.7 54.1 43.2 44.1 48.6

NAPA-VQ 74.7 60.9 42.7 21.3 82.9 66.9 88.6 87.1 57.6 56.9 69.3 58.6 57.6 64.9

PRAKA 71.4 57.1 40.0 19.0 81.5 64.7 88.2 86.4 63.9 62.5 69.0 58.0 58.8 66.1

PAEMA 79.8 67.2 49.4 26.0 85.8 69.8 91.0 89.9 49.7 49.3 71.1 60.4 62.5 69.4

The bold numbers represent the best results

4.4 Ablation Study

4.4.1 The Influence of Different˛ Choices

We conduct an ablation study of different α choices in Table
7 to demonstrate the effectiveness of our proposed PAEMA
scheme. We first train our model on Market-1501 and then
finetune it on subsequent datasets. After each finetuning, the
EMA with α is adopted to update the model. α = 1.0 means
only keeping the newmodelwithout retaining any knowledge
from old models. Descend means adopting the time-varied
strategy α = 1/s (Yu et al., 2023), s is the training step.
The results in Table 7 show that the value of α significantly
impacts final performance and the optimal α varies signif-

icantly at different LReID steps. When using a fixed α for
EMA, a higher α could result in higher performance on new
datasets and lower performance on old datasets. When using
the adaptive parameter α obtained by PAEMA, the overall
performance can outperform all the fixed EMA strategy and
time-varied strategy α = 1/s, indicating that our proposed
method achieves a better balance between knowledge acqui-
sition and catastrophic forgetting. In this case, the adaptive
α calculated by our model is 0.61, 0.57, and 0.61 for three
datasets respectively.
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Table 6 The average forgetting results of GwFReID benchmark

Average Forgetting(↓)
Methods E R@1 mAP

PTKP ‡ � 3.50 5.53

PTKP-ViT‡ � 3.00 4.58

KRKC‡ � 8.57 14.1

KRKC-ViT‡ � 4.47 9.97

PAEMA � 2.83 4.36

LwF‡ × 6.98 11.3

SPD‡ × 4.58 7.52

CRL‡ × 5.68 9.14

L2P‡ × 10.8 14.1

Dualprompt‡ × 8.48 14.5

PTKP‡ × 14.0 21.0

PTKP-ViT‡ × 8.19 13.6

NAPA-VQ‡ × 5.24 8.60

PRAKA‡ × 4.57 7.78

PAEMA × 3.37 6.44

The bold numbers represent the best results
Emeans that sampled images of historical datasets are retained as exem-
plars and are replayed when new data comes
‡ represents that we reproduce the results based on their codes

4.4.2 The Influence of Prompt Hyperparameters

There are two important hyperparameters in PAEMA to con-
trol the adopted prompts: the prompt length L p and which
layers the prompts are embedded. Therefore, we conduct
extensive experiments to verify the influence of these hyper-
parameters. As shown in Table 8, implementing prompts to
all layers achieves the best performance, which demonstrates
the analysis that all layers must be considered comprehen-

sively to get a better estimationofmodel variation inSect. 3.5.
For L p, the length of prompts directly influences the balance
between the stability and plasticity of the model. A too-small
L p is not powerful enough for knowledge learning while a
too-large L p will result in a heavy computation burden and
a higher rate of knowledge forgetting. It can be observed
that as the prompt length increases, the average forgetting
rate increases from 3.2%/5.7% to 3.7%/6.4%, indicating that
the model experiences more forgetting with longer prompt
lengths. Consequently, to strike a balance between knowl-
edge forgetting and acquisition, we have chosen a prompt
length hyperparameter of 5 based on the experimental results.

4.5 Training Time Comparison

In this section, we investigate the training costs of different
LReID methods. Given the training epochs and batch size
of all methods are set the same, we use the mean second
per batch to reflect the training time. As shown in Fig. 7, we
compare the training time with the exemplar-based method
PTKP (Ge et al., 2022), exemplar-free methods AKA (Pu et
al., 2021) and PatchKD (Sun & Mu, 2022), as well as the
baselines (ViT-base, Res-base) with only backbones opti-
mized. Note that only our PAEMA is built upon ViT, the
other existing methods including PTKP, AKA, and PatchKD
are all built upon ResNet-50.

Compared with the ViT-base methods, our PAEMA
brings very little training time growth (6%). However, both
exemplar-free methods AKA and PatchKD bring a signif-
icant training time growth after step 1 (60%) compared to
Res-base owing to the additional designs to maintain the
historical knowledge. Moreover, the training time of the
exemplar-based method PTKP grows largely along the train-
ing steps mainly because of the replaying of historical data.

Table 7 Ablation study
between using fixed α for EMA,
and using adaptive α obtained
by our proposed PAEMA

Train: Market-1501 → DukeMTMC → CUHK-SYSU→ MSMT17_v1

Market-1501 DukeMTMC CUHK-SYSU MSMT17_v1 Average

α R@1 mAP R@1 mAP R@1 mAP R@1 mAP R@1 mAP

0.0 93.4 84.7 52.8 36.3 84.1 82.4 25.8 9.6 64.0 53.2

0.3 92.3 82.8 75.3 63.3 92.5 91.7 55.6 30.9 78.9 67.2

0.4 90.9 79.7 77.8 66.4 93.6 92.6 62.7 38.0 81.3 69.2

0.5 88.9 75.7 78.5 67.7 93.8 92.9 68.4 44.6 82.4 70.2

0.6 86.9 71.7 78.8 67.3 93.7 92.8 72.8 50.1 83.0 70.5

0.7 84.1 67.1 77.5 66.1 93.3 92.4 75.9 54.3 82.7 70.0

0.8 82.4 63.3 76.4 64.1 92.9 91.8 77.7 56.9 82.3 69.0

1.0 76.8 53.7 71.5 57.3 90.5 88.8 78.5 58.3 79.3 64.5

Descend 91.4 80.5 80.3 69.7 92.9 92.1 53.3 28.8 79.5 67.8

PAEMA 87.3 71.4 78.6 67.7 93.6 92.6 73.5 51.0 83.2 70.7

The bold numbers represent the best results
Descend means adopting the time-varied strategy α = 1/s. s is the training step
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Table 8 Ablation study on the hyperparameters including the Length of each prompt and MSA Layers with prompt integrated

Train: Market-1501 → DukeMTMC → CUHK-SYSU → MSMT17_v1

Market-1501 DukeMTMC CUHK-SYSU MSMT17_v1 Average Forgetting

Length Layers R@1 mAP R@1 mAP R@1 mAP R@1 mAP R@1 mAP R@1 mAP

5 1–6 87.1 72.6 78.6 67.5 93.7 92.8 72.3 49.2 82.9 70.5 3.1 5.0

5 4–9 85.8 70.9 78.2 67.3 93.6 92.6 74.2 50.8 83.0 70.4 4.2 6.3

5 7–12 84.9 68.3 77.8 66.5 93.8 92.7 74.8 52.6 82.8 70.0 4.3 7.6

5 1–12 87.3 71.4 78.6 67.7 93.6 92.6 73.5 51.0 83.2 70.7 3.4 6.4

1 1–12 87.4 72.7 78.0 66.8 94.0 92.8 72.6 49.8 83.0 70.5 3.2 5.7

2 1–12 86.3 70.7 78.5 67.2 93.9 92.9 73.3 50.8 83.0 70.4 3.4 6.2

5 1–12 87.3 71.4 78.6 67.7 93.6 92.6 73.5 51.0 83.2 70.7 3.4 6.4

10 1–12 86.9 71.2 78.8 68.0 93.7 92.7 73.2 50.3 83.1 70.6 3.7 6.4

The bold numbers represent the best results

Therefore, the design of our PAEMA is indeed efficient in
the training procedure meanwhile can achieve better LReID
performance.

4.6 Visualization Comparison

For a comprehensive comparison, in Fig. 6, we visualize the
RelD results of our PAEMA and PTKP on the CUHK-SYSU
dataset and the unseen SenseReID dataset respectively. The

results on CUHK-SYSU show that our proposed PAEMA
could extract more discriminative information for accurate
retrieval. From the visualized results on SenseReID, we can
observe that PTKP tends to retrieve images with similar
styles, while our PAEMA could retrieve the correct peo-
ple even if their styles are apparently different. This may
be because exemplar-based methods often collect images of
different datasets with various styles, and when these data
are trained together, image styles could be a misleading clue,

Fig. 6 Top-5 retrieval results of our PAEMA and PTKP on CUHK-SYSU (seen) and SenseReID (unseen). The images in black represent query
images, and the ones in the green and red boxes represent the correct and false retrievals respectively (Color figure online)
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Fig. 7 Illustration of the mean second per batch over different training
steps. The exemplar-based method PTKP (Ge et al., 2022), exemplar-
freemethods (our PAEMA,AKA(Pu et al., 2021), PatchKD (Sun&Mu,
2022)), and baselines (Res-base, ViT-base) built on backbones without
any anti-forgetting designs are evaluated. The batch size of all methods
and the replay batch size of PKTP are set to 64

and the resulting exemplar-based model trends to distinguish
people according to the image styles. This also explains the
tremendous improvement of PAEMA on SenseReID which
contains people in varied styles.

5 Conclusion

We target a practical yet challenging ReID scenario named
Lifelong Person Re-Identification (LReID). Training data
from different datasets are given in sequence so that the
ReIDmodel needs to be incrementally updated to handle both
seen and unseen domains. Tomitigate the catastrophic forget-
ting issue in LReID, a popular solution is to retain sufficient
exemplars from the old domains for rehearsal. Differently, in
this paper, we propose a novel exemplar-free LReID model
based on the designed Prompt-guided Adaptive Exponential
Moving Average (PAEMA) algorithm to achieve dynamic
knowledge preservation. By innovatively leveraging prompts
as a surrogate for knowledge shifting estimation, without
using any exemplars, the forgetting issue is greatly allevi-
ated by our method.
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